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A critical examination is made of a recentlysuggested experimental technique which 
utilizes the Johnson-Mehl-Avrami transformation rate equation to describe non- 
isothermal transformations. It is shown that for transformations involving nucleation 
and growth the technique has limited applicability. 

The general theory of transformation kinetics is largely confined to the descrip- 
tion of isothermal transformation conditions. In large measure this is due to the 
mathematical simplicity of the description at constant temperature. However, 
there are many instances where the kinetic behavior of a system which is heated 
or cooled through the transformation region is of greater practical importance. 
Examples of such non-isothermal situations are as diverse as the heat treatment 
of metallic alloys and the melt spinning of polymer textile fibers. Under the proper 
experimental conditions the techniques of diffelential scanning calorimetry (DSC), 
differential thermal analysis (DTA), thermogravimetry (TG), etc. can be used to 
measure the time evolution of phase transformations under non-isothermal con- 
ditions. Generally, the experimental results of such thermoanalytical techniques 
are analyzed in terms of the formalism developed theoretically for isothermal con- 
ditions. In many instances this can be done successfully. However, in the case of 
transformations involving nucleation and growth it has been incorrectly asserted 
that the isothermal Johnson-Mehl-Avrami  transformation rate equation can 
be applied without qualification to experimental results obtained under non- 
isothermal conditions. This paper is an attempt to clarify the limitations of em- 
ploying the isothermal formalism in treating non-isothermal transformations in- 
volving nucleation and growth. 

Isothermal transformation conditions 

The problem of describing non-isothermal transformation kinetics is perhaps 
best approached by first outlining the formalism used to describe isothermal reac- 
tion conditions. There are several reasons for this assertion. The mathematical 
description of the isothermal theory of nucleation and growth is tractable and well 
developed in the literature. Most of the literature dealing with non-isothermal 
transformation kinetics is based at least in part on the formalism of the description 
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of isothermal transformations. The errors in the literature indicate that the general 
framework of the classical theory of nucleation and growth is not well understood 
by those adapting it for analysis of non-isothermal transformations. For these 
reasons and for the purposes of further discussions, a brief outline of the salient 
elements of the formal theory of transformation kinetics follows. 

The concepts which underlie the theoretical description of phase transformations 
involving nucleation and growth were originally set forth by Volmer and Weber 
[1 ], Becker and Doring [2], Johnson and Mehl [3] and Avrami [4]. A comprehen- 
sive overview of the literature in this area has been given by Christian [5]. For the 
purposes of this paper it will be sufficient to consider the simplest type of growth. 
In particular consider the transformation kinetics of a system which demonstrates 
homogeneous (random) nucleation, and which has the growth rate of the product 
phase controlled by processes at the interface between the parent and product 
phases. In this instance the fraction of the product phase, x, which has formed at 
some time, t, is given by the well known result [4, 5]: 

t 

x(t)  = 1 - exp [ -  S v(t, (1) 
0 

where I(z) is the nucleation rate at time z, and is in general a rapidly varying func- 
tion of temperature; v(t, z) is the volume of a particle of the product phase at time 
t and which started growth (by nucleation) at time z. 

Equation (I) holds for non-isothermal as well as isothermal transformation 
conditions. If it is assumed that the growth of the product phase is confined to 
m dimensions with identical growth rates in each of the m dimensions, then Eq. 
(1) can be rewritten as: 

t 

x(t) = 1 -- exp [-- 0J" g[R(t) -- R@)]mI(z)d'c (2) 

t 

where g is a constant geometrical growth factor and R(t) = 5  Y(O)dO and where 

I7(0) is the growth rate (velocity) along any one of the m growth directions at time 
0 and is in general a function of temperature. 

Under isothermal conditions it can be assumed that the growth rate, Y [5, 6], 
and the homogeneous nucleation rate, I [5], will be constant. Equation (2) then 
reduces to: 

x(t) = 1 -  exp[  ym~__cm +1 ] (3) 

Equation (3) is known as the Johnson-Mehl -Avrami  equation, and is usually 
written in the form: 

x(t) = 1 - exp [ - k t  n] (4) 

where k and n represent constants with respect to time at constant temperature. 
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Table 1 

A summary of the values of n found under various transformation 
conditions after Christian [5] 

Values of n in kinetic law x ( t )  = 1-exp (-kt n) 
'(I) Polymorphic changes, discontinuous precipitation, eutectoid reactions, interface controlled 

growth, etc. 

Transformation conditions n 

Increasing nucleation rate 
Constant nucleation rate 
Decreasing nucleation rate 
Zero nucleation rate (saturation of point sites) 
Grain edge nucleation after saturation 
,Grain boundary nucleation after saturation 

(II) Diffusion controlled growth 

> 4  
4 
3--4  
3 
2 
1 

Transformation conditions n 

All shapes growing from small dimensions, increasing nucleation rate 
All shapes growing from small dimensions, constant nucleation rate 
All shapes growing from small dimensions, decreasing nucleation rate 
All shapes growing from small dimensions, zero nucleation rate 
t3rowth of particles of appreciable initial volume 
Needles their separation and plates of  finite long dimensions, small in comparison with 

Thickening of long cylinders (needles) (e.g., after complete end impinge- 
ment) 

Thickening of  very large plates (e.g., after complete edge impingement) 
l~recipitation on dislocations (very early stages) 

>2�89 
2% 

1�89189 
1�89 
1--1�89 

1 
�89 

,~2/3 

Under isothermal conditions, an exponential growth law of the form of Eq. (4) 
can be used to describe the transformation kinetics of many transformations when 
the growth rate is constant and it can also be used as an approximation for the 
early stages of diffusion controlled growth [5]. This, of course, requires the proper 
choice of k and n. Table 1 summarizes the values of n found under various trans- 
formation conditions; but it must be emphasized that this tabulation is in no way 
complete or unique. Additional information (other than just the value of n) is 
necessary in order to delineate the physical processes which govern a particular 
transformation. This limitation has not been emphasized in some of the recent 
literature [7-9]. 

dx( t )  
The isothermal transformation rate, d--~-' can be easily determined from Eq. 

(4) by differentiating with respect to time. 

dx 
- k n t  n-1 exp[ - k  t"]. (5) 

dt 
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Because of the explicit relation between x and t given by Eq (4), Eq (5) can 
be rewritten equivalently as: 

dXdt - nk~(1 - x )  In ~ " (6). 

where k, it should be remembered, is a function of temperature. 
Equation (6) is sometimes referred to as the J o h n s o n - M e h l - A v r a m i  trans- 

formation rate equation. Thus, it can be seen that Eq. (6) clearly indicates that 
under isothermal conditions there is a unique relationship between the fraction 

dx ( t )  
transformed, x, and the transformation rate, - -  

dt 

Non-isothermal transformation conditions 

Recently Eq. (6) has been applied to the analysis of non-~sothermal transforma- 
tions [7 -  12]. In view of the preceeding development its applicability should be 
questioned. Under non-isothermal conditions both Y, the growth rate, and I, the 
nucleation rate, are no longer constant during the transformation. In general Y 
and I are rapidly varying functions of temperature and in principle their functional 
dependence on temperature is quite different. Thus, Eq. (4) and therefore Eq. (6), 
will not follow from Eq. (2). 

The fact that Eq. (6) cannot be correctly applied to non-isothermal transforma- 
tions involving nucleation and growth can be seen from the following heurestic- 
argument. The simplest non-isothermal treatment is one involving partial iso- 
thermal transformations at two different temperatures. Consider the crystalliza-- 
tion of two identical pure liquid (one component) systems by homogeneous 
nucleation and growth. Under isothermal conditions such a system would comply- 
with all the assumptions used in the development of Eqs (3) and (4) above. Let 
system 1 be severely undercooled below its melting point to temperature, T1, and 
crystallized isothermally until a fraction, x 0, has transformed. Under these con- 
ditions one could expect a high nucleation rate and a slow growth rate [5]. Thus 
the transformed fraction, x 0, could be characterized by relatively numerous crystals 
but small crystal size. Let system 2 be only slightly undercooled to temperature, 
T2, and crystallized isothermally until a fraction, x 0, has transformed. In this case 
the nucleation rate could be expected to be low and the growth rate high [5]. 
The transformed fraction, x o, of system 2 would be characterized by relatively 
larger average crystal size and a smaller number of crystals than in system 1. 
If  systems 1 and 2 with transformed fractions, x 0 are then brought to a common 
temperature, T, and allowed to continue transforming isothermally, it is obvious 
that system 1 will have the higher transformation rate because of the higher surface 
area to volume ratio in its transformed fraction, x o. Equation (6) would erro- 
neously predict identical transformation rates. Clearly, the transformation rate for 
systems demonstrating nucleation and growth are dependent on thermal history 
as well as the state variables of fraction transformed, x, and temperature, T. 
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Phrased somewhat differently, Eq. (1) is dependent on the path of integration in 
temperature-time space. The reason for this dependence is the independent varia- 
tion of the rate at which particles are created (nucleated) and the rate at which they 
grow. 

There are, however, certain special cases when the transformation rate equation 
(Eq. 6) does correctly describe transformations involving nucleation and growth. 
In a different context such transformations were termed isokinetic by Avrami. 
Avrami [4] noted that when the nucleation rate, / ,  was proportional to the growth 
rate, Y, the transformation would take the same course, except for time scale, 
regardless of the transformation path. While this is true, it does not represent a 
.condition that one would expect to find in light of the current models used to 
describe nucleation and growth. Cahn [13] identified a special case of greater 
physical significance. When all nucleation takes place early in the course of a 
transformation, it is said to have undergone site saturation. There are a variety 
o f  important situations where one might expect this condition to be obtained [5]. 
In this case, provided that the growth rate is dependent only on temperature, the 
transformation will be identical at all temperatures; the temperature will control 
only the rate at which the transformation evolves. In the two cases cited above 
the transformation rate will be a unique function of x, and T. Cahn [13] has shown 

d x .  
that in general when d t  is given by a unique function of x and T, the transform- 

at ion will be isokinetic. It should be emphasized that if such a function exists, it 
must be the same for isothermal and non-isothermal transformation conditions, 
and therefore, the J o h n s o n - M e h l - A v r a m i  transformation rate equation Eq. 
,(6) will hold. 

Conclusion 

Thus, the technique of non-isothermal analysis outlined by Sestak [7, 10, 11 ] 
.and others [8, 9, 12] using the J o h n s o n - M e h l - A v r a m i  transformation rate equa- 
tion can only be rigorously applied to transformations involving nucleation and 
growth in a limited number of special cases. The special case of site saturation is 
one of considerable importance for which this method of analysis is correct. 
Following the methods used to develop Eq. (4), it is possible to show that only 
the functional dependence of growth rate on temperature and the value of n can 
be determined. In this case the temperature dependence of the nucleation rate 

~cannot be elucidated. 
Ozawa [14] has outlined another method of non-isothermal analysis which holds 

for any type of transformation involving nucleation and growth. Using Ozawa's 
method, it is possible to directly determine the value of n by measuring the trans- 

formation behavior as a function of constant cooling or heating rates. In the gener- 
a l  case of simultaneous nucleation and growth, however, this method likewise 
.cannot be used to determine the functional dependencies of nucleation rate or 
:growth rate on temperature. 
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Experimentally, the time evolution of  a phase t ransformat ion is usually deter- 
dx(t) 

mined by measuring x(t) ,  ~ or some other physical quanti ty which is p ro-  

port ional  to x( t )  or ~ t  t) . In  terms of  the theoretical model  discussed above, this 

amounts  to a direct measurement  of  Eq. (1) or its first time derivative. Interpreta-  
t ion o f  such measurements under  non-isothermal  condit ions is difficult if  the in- 
tegration involves the product  of  two non-cons tant  terms. Their behaviour  cannot  
in principle be separated. Of  course, if for  some reason the probable  functional 
dependence o f  I and Y are known,  their validity may be tested by integrating Eq. 
(1) and compar ing  the result to the experimentally observed behaviour.  For  in- 
stance, this analysis technique might  be used to test the validity of  isothermally 
determined parameters  in temperature ranges not  accessible to isothermal analysis. 
However,  there appears to be no systematic way by which the measurement  o f  x 

dx 
o r ~ -  under  non-isothermal  conditions can lead to the direct determination o f  

the nucleation rate and the growth rate as functions o f  temperature.  

The author wishes to thank Professor D. G. Ast and Professor E. J. Kramer for their 
advice, and stimulating discussions. 
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RfiSUMI~ -- On examine d'une mani6re critique une technique exp6rimentale r6cemment 
propos6e qui utilise l'6quation des vitesses de transformation propos6e par Johnson-Mehl- 
Avrami pour d6crire les transformations non-isothermes. On montre que la technique n 'a  
qu'une applicabilit6 limit6e pour les transformations qui s'effectuent par nucl6ation et crois- 
sance. 
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ZUSAMMENFASSUNG -- Eine kritische Priifung der neulich vorgeschlagenen Versuchstechnik, 
welche die Johnson-Mehl-Avrami Transformations-Geschwindigkeitsgleichung zur Beschrei- 
bung nichtisothermer Umwandlungen einsetzt, wird vorgenommen. Es wird gezeigt, da0 die 
Methode fiir Umwandlungen mit Kernbildung und Wachstum nur eine geringe Einsatz- 
fahigkeit besitzt. 

Pe3~oMe - -  npoBe~eHo KpHTw4ecI(oe HCCJIe~OBaHHe ae~aBHO Ill0e~.rlO~eHHOFO 9I(cnep~MeHTaJIt,- 
HOrO MeTO~a, B XOTOpOM ~ om~carm~ HeH3oTepMa~ec~4x nl3eBpamerm~ Hcnom,3yeTc~r ypaB~e- 
m~e C~(opocTK npeBpamem~ ~)Ko~tcoHa--Mexa A~paM~. IloI(a3aI~o, ~ITO ~TOT MeTO~ maeeT 
orpam~ea~aoe npaMeaem~e ) I ~  n p e B p a m e ~ ,  BKYltOqaIO/J/tlX 06paaoBarMe I.IeHTpOB KpI~cTa.rl- 
im3ato~rl rt ~x pOCTa. 
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